Part 11

Dynamic Visuals

Chapter 7

Motion, Tweening,
and Easing

hings moving. Isn’t that what drew most of us to Flash? Motion is

deep in Flash’s genetic code. The Timeline animation tools haven’t
changed much over the various versions of Flash. But in Flash 4 and 5, and
now MX, the growing capabilities of ActionScript have provided powerful
and creative new ways of making things move. In this chapter, we'll explore
the concepts of motion, tweening, and easing. We’ll develop a thorough
understanding of these ideas, and then look at how to realize them in
ActionScript. That said, it’s time to get in touch with our motions.

Concepts of Motion

I have spent quite some time thinking about motion as it applies to
programmatic animation. This is something that comes from my philosophy
training—analyzing a concept to break it into definitive components. More
specifically, the issue is this: what constitutes a motion—an identifiable
instance of motion—f{rom a programmer’s point of view? To keep it simple,
I decided to restrict my consideration to one-dimensional motion, at least
initially. I came up with this definition: a motion is a numerical change in
position over time. Breaking this down even further, we see that there are
three key components of a motion: position, time, and beginning position.

} Position A motion has a unique numerical value—its position—
at any point in time. When the value of the position changes, there
is movement.

} Time A motion occurs over time. Typically, time is measured in
positive numbers. In my mind, it makes sense to standardize motion
time by starting it at zero, like a shuttle launch. After that, a motion’s
time property ticks away like its own personal stopwatch.

Chapter 7: Motion, Tweening, and Easing 193

} Beginning Position A motion has to start somewhere. From our
perspective, the motion starts at the moment in time we start
observing it—in other words, when time is zero. Thus, we define
beginning position as the motion’s position when time is zero.

More on Position

By position, I don’t mean merely physical position. For our purposes, position
can be any numerical quantity. It could be something visual like the movie
clip properties _x, _xscale, or _alpha. It could also be a variable
representing money, temperature, music volume, or population density.

To be more specific, the position quantity should be a real number that is
one-dimensional. In other words, position has a scalar, not a vector value, as
discussed in Chapter 4. The number can be positive, negative, or zero, a
decimal or an integer. In visual terms, we should be able to locate the quantity
on a number line, either to the left or right of zero, or at zero itself. Figure 7-1

shows two positions on a number line, at -2 and 1.

NOTE: Incontrast to real numbers, there are imaginary numbers, which essentially consist of a real number
multiplied by , the square root of -1. There are also complex numbers, which are two-dimensional. Each complex number
is the sum of a real and an imaginary number.

Of course, we find motions in higher dimensions. We are most familiar
with two- and three-dimensional movement in our world. However, a
multi-dimensional position can usually be broken down into several
one-dimensional positions. The Flash stage is a two-dimensional space,
through which movie clips travel. A simple diagonal tween may look like
one motion, but really it’s a combination of changes in _x and _y, which
are independent from each other. By contrast, _width and _xscale are
not independent—changing one affects the other. Thus, they are not
separate dimensions, but different aspects of the same dimension.

NOTE: Consider the fact that a movie clip has many numerical visual properties: _x, _y, _xscale,
_yscale,_rotation, and _alpha. Consequently, you could say that an animated movie clip is moving
through six-dimensional space. If you're interested in learning more about higher dimensions, | recommend the books
Flatland and The Mathematical Tourist.

pl p2
_péo—o—o—|—0—o—o%+p

0

FIGURE 7-1

Positions p1 and p2 on a number line

194

Robert Penner’s Programming Macromedia Flash MX

It's important to realize that, from a programming perspective, the
position of a motion is numerical by necessity. Any quantity that can be said
to be moving, you should be able to represent with a number. For instance,
suppose a string variable contains a single letter, and is “moving” through
the letters of the alphabet—first it’s “A,” a second later it’s “B,” and so on.
The quantity in question, letters, is not natively numeric. However, we
know that there is a specific order to the symbols: B follows A as surely as 2
follows 1. It is possible to place the letters in order on a number line. We
can easily correlate the letters of the alphabet with numbers; in fact, the
ASCII codes have already done this. Thus, we can treat the changing letters
as a numerical motion.

Position as a Function of Time

The aspect of time is crucial to motion—things change over time. Nothing
can move in “zero time,” or be in two places at once (although quantum
theory may have some strange exceptions to this rule). In other words, a
position needs time to change, and it can have only one value at a specific
point in time.

Because position and time have this one-to-one relationship, we
can say that position is a function of time. This means that, given a specific
point in time, we can find one, and only one, corresponding position.
In mathematical terms:

where p = position, t = time:
p =)

In ActionScript, we can implement mathematical functions literally
with—you guessed it—functions. Notice the similarity between the
following code and the preceding math notation:

f = function (time) {
return 2 * time;

Y

// test f()

t = 12;

p = £(t);

trace (p); // output: 24

In comes the time, out goes the position. Since an ActionScript function
can only return one value, we can see the importance of the one-to-one
relationship between time and position. Later in the chapter, we'll look at
my tweening functions, which provide meaningful and predictable
relationships between position and time.

Chapter 7: Motion, Tweening, and Easing 195

+p

+t

FIGURE 7-2

Graph of a motion's position over time

NOTE: Inasense, afunction can have many values at once if you pack an object with properties and retum the
object. However, what is retuned from the function is still one value — an object reference.

Motion as a Graph

Time is one-dimensional, and for this discussion, we are keeping position
one-dimensional as well. Position can be represented on a number line, and
time can be displayed on another number line. If we put these two number
lines at right angles to each other, we have a Cartesian graph (discussed in
Chapter 3). The standard practice is to put time along the x-axis, and the
function of time (position in our case) on the y-axis.

With this setup, we can visually represent a motion by plotting points
on the graph. Instead of (x, y), we have (p, t) coordinates. Figure 7-2 shows
a graph of a possible motion.

Static Tweens in Flash

The word “tween” is derived from “between.” The term comes from traditional
animation, where the work is split between keyframes and tween frames.
Some of the animators would draw the keyframes, and others, perhaps
those with less talent or seniority, would do the grunt work of filling in the
gaps with tween frames.

The concept transfers well to Flash. On the Timeline, a designer can define
keyframes, and tell Flash to do the mundane work of tweening between
them. I call these Timeline tweens. You define them at author-time, on the
Timeline, and Flash “hard-codes” that motion into the SWF. You can’t
change these tweens at run-time, so I also call them static or author-time
tweens. The converse would be dynamic, run-time, ActionScript tweens,
which we'll explore later in the chapter.

196

Robert Penner’s Programming Macromedia Flash MX

You may be interested to know that author-time tweens actually don’t
exist in a SWF file. I once thought that Flash stores the keyframes in the
SWF and then calculates the tween on the fly. I discovered, however, that
this is not the case. When you publish your movie, Flash simply keyframes
the entire tween. You can verify this by comparing the file sizes of SWFs
with the same movement, one with a tween, the other with keyframes. Try
an experiment by following these steps:

1. Start with a new movie.

2. Create an empty movie clip symbol.

w

Drag the movie clip from the library to the stage to create a keyframe
on frame 1.

Insert a keyframe on frame 5.

Move the movie clip to a new position on frame 5.

Create a Timeline tween between frames 1 and 5.

Turn SWF compression off in the Publish Settings.

Test the movie (CTRL-ENTER). The SWF should be about 104 bytes.

¥ e N O Uk

Now keyframe the entire tween by selecting all of the frames and
pressing Fé.

10. Test the movie. The SWF has the same file size.

As you can see, author-time tweens have no advantage, in terms of file
size, over keyframes. There is also no difference in processor usage between
timeline tweens and keyframes.

Shape tweens are a different story. Through testing, I found that the
transition frames in a shape tween are calculated on-the-fly—not pre-rendered
in the SWEF. As a result, you can increase the length (in frames) of a shape
tween without seeing much increase in file size. If you convert a shape
tween to keyframes, however, you will likely see an increase in file size if
the shapes are sufficiently complex. I ran a test on a shape tween between
two dense scribble shapes. With ten frames in the tween, the SWF file size
was 38 KB. However, after keyframing the ten frames and clearing the shape
tween setting, the same animation became 258 KB! The other end of the
stick is that shape tweens are more demanding on the CPU than are motion
tweens, as the intermediary curves must first be calculated and then rendered.

Chapter 7: Motion, Tweening, and Easing 197

Dynamic Tweening in ActionScript

I have often heard ActionScript programmers express their desire to “break
free of the Timeline,” especially when it comes to animation. Timeline
tweens are static and stolid. You're stuck with whatever endpoints and
easing you define in the authoring tool.

Once you begin working with ActionScripted motion, however, a whole
world of possibilities opens up. You can produce interactive, dynamic
motion that seems smoother and more alive than Timeline tweens. Often,
this involves using principles of physics to create bounce and acceleration,
which we'll discuss in Chapter 8. In the remainder of this chapter, though,
we'll explore a variety of ways to dynamically tween in ActionScript.

The Standard Exponential Slide

The most well-known technique of ActionScripted tweening is what I call
the standard exponential slide. (It's tempting to coin a tacky acronym like
SES, but I'll abstain.) The slide is a movement towards a destination that
gradually slows to a stop—an ease-out. The slide is exponential because
the speed can be represented with an equation that depends on a changing
exponent. Later in the chapter, we will look at this equation. You may
recognize the slide technique in the following code:

// a standard exponential slide
this.onEnterFrame = function () {
var distance = this.destinationX - this._x;
this._x += distance / 2;
Y

At my first FlashForward conference, I remember hearing the concept of
this slide explained by three different speakers. The idea is simply that you
move a fraction of the distance—say one-half—to your destination in each
unit of time. For instance, if you need to move a total of ten feet, you could
move five feet, then 2.5 feet, then 1.25, then .625, and so on.

The ancient Greek philosopher Zeno explored this idea in one of his
famous paradoxes: if you have to move halfway each time, you never
actually reach your destination. (Zeno had a decent point, at least until
quantum theory showed that space is not infinitely divisible.) In Flash,

198

Robert Penner’s Programming Macromedia Flash MX

though, you soon get “close enough,” that is, within a pixel of your
destination, or until you've exceeded the available decimal places of
floating-point numbers (at which point 9.9999... turns into 10).

All in all, the standard exponential slide is a dynamic ease-out motion
easily generated with a tiny amount of ActionScript. This, of course, is why
you see it everywhere. However, I grew dissatisfied with this technique, for
several reasons. First of all, you can only do ease-out, not ease-in. Also, the
motion is aesthetically different from Flash’s own eased tweens. Compared
to a Timeline tween with ease-out, the slide moves “too fast” in the
beginning, then “too slow” towards the end.

Furthermore, you can’t directly find the tween’s position for a given
time. For instance, you have no way of knowing exactly where the moving
object will be when ten frames have elapsed. Each frame’s position is
dependent on the previous frame. Consequently, you have to run the whole
process from the beginning to get to a specific point in time. There’s no
easy way to jump to an arbitrary frame in the tween.

Lastly, you can’t directly specify the duration of the tween. The formula
doesn’t let you make the tween, say, 20 frames in length. Basically, “it gets
there when it gets there.” You can change the acceleration factor to speed
up the process or slow it down, but it takes trial and error to get a tween of
the desired duration.

Noticing these shortcomings, I made it my mission to find an alternative
to the standard exponential slide. I wanted tweens and easing that would
give more control to the ActionScript developer. But first, more analysis was
needed.

Key Components of a Tween

A tween can be defined as an interpolation from one position to another. Thus,
a tween fits our earlier definition of a motion—a change in position over
time. Tweens are a subset of motions, just as diamonds are a subset of gems.
As such, tweens and motions share the three essentials of position, time, and
beginning position. In addition, tweens have two other essential characteristics:
duration and final position.

Duration

A tween has to end. It has to take “less than an eternity” to reach its
destination. In other words, a tween must have a duration that is less than
infinity, but greater than zero.

Chapter 7: Motion, Tweening, and Easing 199

NOTE: By contrast, o generic motion doesn’t necessarily have a finite duration. For instance, a circular orbit is a
motion that never ends. A motion without a duration s definitely not o tween.

Final Position

A tween fills in the gap between two keyframe positions, getting you
“from Point A to Point B.” Point A is the beginning position—something
all motions have. Point B, meanwhile, is the final position, an essential
component of a tween.

NOTE: It'salso possible to replace final position with change in position, which is simply the difference between
Point A and Point B. For example, you can either say, “start af 10 and go to 15,” or you can say, “start at 10 and go
forward by 5.” Final position is an absolute coordinate, whereas change in position is a relative coordinate.

Tweening Functions

Naturally, there are different ways to implement tweening in ActionScript.
However, having boiled tweens down to their essence, I believe that my
code captures the key elements—no more, no less.

The purpose of a tweening function is to deliver a position for a specific
time, given the tween’s essential characteristics. These characteristics are
beginning position, final position, and duration.

In terms of structure, we have five quantities to incorporate into the
function. Position is the one that is spit out the back end. The other four
items are fed to the function as parameters. A tweening function should
have this approximate structure, then:

getTweenPosition = function (time, begin, final,
duration) {

// calculate position here

return position;

Y

Alternatively, change in position could be used instead of final position, in
which case, the function would look like this:

getTweenPosition = function (time, begin, change,
duration) {

// calculate position here

return position;

Y

200 Robert Penner’s Programming Macromedia Flash MX

With my tweening functions, I found that I could optimize the code a
bit more if I used change. I also decided to store the functions in the Math
object, to make them globally accessible. My tweening functions have this
format:

Math.tweenFunc = function (t, b, ¢, d) {
// calculate and return position

Y

NOTE: |shortened the parameter names to one letter for speed. Variables with longer names take longer

to look up than variables with short names, because of the interpreter’s intemal hashing procedure. | heard this from
Gary Grossman, the creator of ActionScript. Timing tests run by members of the Flashcoders list have also confirmed
the difference in speed.

As for the actual calculation of the tween'’s position—that’s where things
get interesting. We are now ready to explore specific equations that interpolate
between two points in diverse ways.

I_inear Tweening

“The shortest path between two points is a straight line”—so goes the
saying. When you want to move from Point A to Point B, a linear tween
is the simplest path, mathematically speaking. This tween has constant
velocity throughout; there is no acceleration. In Flash, a Timeline tween
with an easing of zero is a linear tween.

Graph

When you graph a linear tween over time, it comes out as a straight line.
That’s why I call it a “linear” tween. Figure 7-3 shows the graph of a linear
tween’s position over time.

In this chapter, the tweening graphs I use are all “normalized” in a
particular way. Both axes—position and time—are plotted between standard
values of 0 and 1. Of course, in real-world situations, position and time
range between many different values. For instance, a tween may move a
total of 120 pixels in 30 frames. If we graphed this motion, the position axis
would be displayed between 0 and 120, and time would range from O to 30.
However, we can easily stretch our original normalized (0 to 1) graph to
match this new graph. All it takes is simple multiplication: 30 horizontally
by 120 vertically.

Chapter 7: Motion, Tweening, and Easing 201

FIGURE 7-3

Graph of a linear tween's position over time

The equation for the graph in Figure 7-3 is quite simple:
p(t) =t

This is the basic y = x equation for a diagonal line that most of us learned
in high school math. If the time is 0.6, the position is also 0.6.

As the graph stands, the slope of the line (rise over run) is 1: position
(the rise) changes by 1 over the course of the tween, and so does time (the
run). This is the normalized form of the equation, though, with values
ranging from O to 1. If we take the example tween mentioned earlier, where
position changes by 120, and the duration is 30, the slope is different:

slope = rise / run

slope = change in position / duration
slope = 120 pixels / 30 frames

slope = 4 pixels / frame

In this case, the slope is 4 pixels per frame. The slope of the line is also the
velocity of the motion. A different tween covering 240 pixels in 30 frames
would have a velocity of 8 pixels per frame. It moves faster than the first
tween and its graph has a steeper slope.

We can generalize these results to come up with a standard equation for
a linear tween, given the change in position and duration. We know that
that velocity is constant during a linear tween, just as the slope is constant.
Thus, we can find the tween'’s position at a particular time by simply
multiplying velocity by time:

p(t)=txv

202

Robert Penner’s Programming Macromedia Flash MX

To take a real-life example, suppose your car’s velocity is 60 miles per hour:

v =060

If you've been driving two hours, how many miles have you covered? This
is easy to work out in your head, but let’s do the math explicitly:

t=2
p(t)=txv
p(2) =2 % 60
p(2) = 120

We know that velocity equals change over duration, so we can replace v
with ¢ divided by d:

let ¢ = change in position and d = duration
v=c/d

p(t)=txv

p(t)=tx(c/d

One last thing: remember that a tween has a beginning position. So far,
we’ve assumed that the beginning position is zero. However, this often isn't
the case. In terms of the car example, suppose you start 10 miles out of
town, then drive at 60 mph for 2 hours. You’ll end up 130 miles from the
town (120 + 10).

We can incorporate the beginning position into our equation, simply by
adding it at the end:

let b = beginning position
p(t)=tx(c/d) +b

NOTE: The preceding equation is a form of the “slope-y-intercept” equation for a line: y = mx + b. Here, the
variable m'is the slope, and b is the y-infercept, the point where the line crosses the y-uxis.

ActionScript Function
The code for our linear tween function follows the earlier equation closely:
Math.linearTween = function (t, b, c, d) {

return c*t/d + b;

Y

Four parameters enter the function—time, beginning position, change in
position, and duration—and the corresponding position is returned.

Chapter 7: Motion, Tweening, and Easing 203

Implementing a Tween with a Function

How do we actually use a tweening function? It’s a matter of setting up the
key properties of a tween, and feeding them into the function. First, we
decide which property we want to set in motion. The _x property of a
movie clip will do nicely to start. Tweening _x will produce a horizontal
motion.

Then we need to choose the parameters of the tween. Where will it start,
where will it finish, and how long will it take? We then establish these
quantities in begin, finish, and duration properties inside the movie clip:

this.begin = 100;
this.finish = 220;
this.duration = 30;

This tween will start at 100 pixels and end up at 220, over the course of
30 frames. Looking ahead, we know that the tweening function requires the
change in position, rather than the final position itself. So we might as well
add a change property:

this.change = this.finish - this.begin;

A tween’s time starts at zero, so let’s initialize it as another property:

this.time = 0;

To produce animation, we need a frame loop. This calls for an
onEnterFrame(') handler for the movie clip:

this.onEnterFrame = function () {
// do tweening stuff
Y

Now we have to figure out what code to put in the frame loop. What
properties change over the course of the tween? Our first three properties,
begin, change, and duration, don’t vary. It is time and position that
change during the tween. We'll have time track the number of frames that
have elapsed. Thus, it should be incremented every frame:

this.onEnterFrame = function () {
this.time++;

Y

204 Robert Penner’s Programming Macromedia Flash MX
The other changing property is position. How do we get the position as
time flies by? We call upon our tweening function, which takes four tween
parameters and returns the position. So we could call it like this:
this.position = Math.linearTween (this.time, this.begin,
this.change, this.duration);
this._x = this.position;
We can make this more straightforward by assigning the position value
directly to the _x property:
this._x = Math.linearTween (this.time, this.begin,
this.change, this.duration);
We can shorten this even further by using the with statement:
with (this) {
_x = Math.linearTween (time, begin, change,
duration) ;
}
Setting the scope to this eliminates the need to reference each of the
properties with the “this” prefix.
Now we can put the tweening function inside the onEnterFrame()
handler to produce animation, with the following code:
this.onEnterFrame = function () {

with (this) {
_x = Math.linearTween (time, begin, change, duration);

}
this.time++;
bi
The position is calculated, then time is incremented by one. We can
simplify a bit by incremented time in the same step as passing it to the
function:
this.onEnterFrame = function () {

with (this) {
_xX = Math.linearTween (time++, begin, change, duration);

Chapter 7: Motion, Tweening, and Easing 205

Putting all of our code together, we have this:

this.begin = 100;
this.finish = 220;
this.change = this.finish - this.begin;
this.duration = 30;
this.time = 0;
this.onEnterFrame = function () {

with (this) {

_xX = Math.linearTween (time++, begin, change, duration);

At this point, you can stick this code into a movie clip and try it out. It
should work—for the most part. There will be one small problem, however:
the tween won’t end. For the animation to work, we need to stop when the
tween’s time is up. If the time is greater than the duration, we should stop
the frame loop by deleting the onEnterFrame() handler. By adding one line
of code to perform this check, our tween is finished:

// a linear tween in _Xx

this.begin = 100;

this.finish = 220;

this.change = this.finish - this.begin;

this.duration = 30;

this.time = 0;

this.onEnterFrame = function () {

with (this) {

_xX = Math.linearTween (time++, begin, change, duration);
if (time > duration) delete this.onEnterFrame;

In this code, you can replace Math.linearTween with another
tweening function to produce a different style of tween. Thankfully, all
my tweening functions have the same structure, making them easily
interchangeable. We'll look at the different flavors of tweening and easing
later in the chapter. But first, let’s return to our discussion of linear motion.

206

Robert Penner’s Programming Macromedia Flash MX

Aesthetics of Linear Motion

I'll be honest—I don’t care much for linear tweens. They look stiff, artificial,
mechanical. You mostly see unaccelerated motion in machinery. An
automated factory is chock-full of linear tweens—robotic arms, conveyor
belts, assembly lines. It is extremely difficult for humans to move in a linear
fashion. Breakdancers who do “robot”-style moves have achieved their
linearity with much practice. In this sense, you could say Michael Jackson
is the master of the linear tween.

So, there are some legitimate uses of linear tweens. If you're animating
robots or breakdancers, they’re perfect. For most other things, though,
linear motion can look downright ugly. I have often come across
animations where the author obviously threw down some keyframes and
tweened between them without applying any easing. It drives me nuts.

I don’t know how much the average person picks up on the naturalness
or falsity of motion in Flash movies, but in 3-D animation, people certainly
are quick to say when the movement “looks totally fake,” even when the
object texture is photorealistic. For example, in Star Wars Episode II: Attack
of the Clones, there is some excruciatingly bad animation in the scene where
Anakin is trying to ride one of the “Naboo cows.” It’s something most
adults would notice, I think.

I have a theory that the mind is constantly interpreting an object’s
motion in order to infer the forces acting on it. When an object accelerates
in an unnatural way, the brain picks up on it and says, “that’s not possible
with real-world forces.” In real life, suppose you saw a ball roll to the right
at a constant speed, then abruptly roll to the left at a faster speed. You
would think to yourself, “Something must have hit it"—even if you didn’t see
a collision. Similarly, when an object switches from one linear tween to
another, there is an instantaneous change in velocity, like the ball changing
direction suddenly. When I see this, I feel like the object has been jerked
by an invisible chain, or bounced off an unseen wall. But when I can’t
see a chain or a wall, the “cognitive dissonance” drives me crazy. “It’s not
supposed to move that way!” I protest. It takes some easing to calm
me down.

Easing

Easing is acceleration, a change in speed. In this chapter, I focus on easing
as the transition between the states of moving and not-moving. When an
object is moving, it has a velocity of some magnitude. When the object is
not moving, its velocity is zero. How does the velocity change—what does
the acceleration look like?

Chapter 7: Motion, Tweening, and Easing 207

In the real world, velocity doesn’t suddenly jump from one value to
another. Sometimes it looks that way, for instance, when you hit a baseball
with a bat. Even here, though, the change isn’t instantaneous. If you watch
the collision in super-slow motion, you can see the ball gradually slowing
to a stop, and actually deforming around the bat. Then, the ball accelerates
in the direction of the bat’s swing and flies off. There is a deceleration to
a speed of zero, then an acceleration in the other direction—two instances
of easing.

Aesthetics of Eased Motion

Most movements in nature have some kind of easing. Organic processes
typically involve forces (which we’ll discuss in detail in Chapter 8). If the
forces aren’t in balance, acceleration is produced. Our minds make this
connection between acceleration and force intuitively. When we see the
velocity of an object gradually changing, we infer that some force is steadily
pushing or pulling it. As a result, animation usually looks more natural
and fluid when it follows similar rules.

Elevators are great examples of the importance of easing. Imagine riding
in an elevator that didn’t start or stop moving with any easing. You press
the button to go to the twentieth floor. The elevator doors close, then the
whole thing suddenly jerks upwards, throwing you to the floor. Getting
back to your feet, you watch the numbers: eighteen... nineteen... ding/ Your
body flies straight upwards. As the doors open, you frantically try to pull
your head out of the ceiling. Too late! The elevator flies back down to the
first floor, and suddenly you're weightless.

This is a facetious example, to be sure. But I literally feel “jerked around”
in a similar way when I watch animation without proper easing. Let’s look
at three general categories of easing: ease-in, ease-out, and ease-in-out.

Ease-In

Start slow and speed up—that’s an ease-in. With author-time tweens,
an easing value of -100 produces an ease-in. In my Flash 4 days, when
I majored in Timeline tweens, I nearly always used easing values of
either 100 or -100. In general, I don’t find less-than-100 percent easing
very useful. Therefore, from this point on, I will use “easing” to mean
100 percent easing.

If we graph the position of an ease-in tween over time, we arrive at a
curve like the one in Figure 7-4. With easing, we get a curve. Without
easing, we get a line as in Figure 7-3.

Remember that the slope of a graph corresponds to velocity. The tween
curve starts out horizontal—a slope of zero. Thus, at t=0, the velocity is

208

Robert Penner’s Programming Macromedia Flash MX

FIGURE 7-4

Graph of an ease-in tween

zero—a dead stop. Over time, the graph gradually becomes steeper and the
velocity increases.

NOTE: Fosein and ease-out are reversed in Flosh from what they are in many other animation programs. In 3-D
animation software, for instance, an ease-in slows down at the end of the tween, not the beginning.

Ease-Out

The inverse of an ease-in is an ease-out, where the motion starts fast and
slows to a stop. A Timeline ease-out tween has an easing value of 100. Take
a look at the ease-out curve in Figure 7-5.

FIGURE 7-5

Graph of an ease-out tween

Chapter 7: Motion, Tweening, and Easing 209

FIGURE 7-6

Graph of an ease-in-out tween

The graph starts out steep but levels off, becoming horizontal at the
end of the tween. The velocity starts out at some positive value and steadily
decreases to zero.

Ease-In-Out

The third category of easing is my favorite. An ease-in-out is a delicious
half-and-half combination, like a vanilla-chocolate swirl ice cream cone.
The first half of the tween is an ease-in; the second half, an ease-out. The
curve of the ease-in-out, shown in Figure 7-6, is quite lovely (and bears
more than a passing resemblance to a certain product logo).

I use in-out easing pervasively because it produces the most natural-
looking motion. Think about how a real-world object might move from one
point of rest to another. The object accelerates from a standstill, then slows
down and comes to a stop at its destination. Elevators, for example, use
in-out easing.

Unfortunately, Flash doesn’t have in-out easing for author-time tweens.
When I do Timeline animation, I am forced to create each ease-in-out with
two tweens. As you can imagine, this is a real pain to maintain when I have
to modify the animation. Every time I change an endpoint of the overall
tween, [have to redo the two half-tweens. I had hoped to find an ease-in-out
option in Flash MX, but alas, it was not to be.

Varieties of Eased Tweens

Thankfully, with ActionScripted motion, the possibilities are endless. With
the right mathematics and code, we can define all manner of tweens with
ease (pun intended).

210 Robert Penner’s Programming Macromedia Flash MX

Quadratic Easing

Flash’s Timeline tweens use something called quadratic easing—which could
actually be termed “normal” easing. The word quadratic refers to the fact that
the equation for this motion is based on a squared variable, in this case,

p(t) ="t

NOTE: |always wondered why the term quacatic (the prefix means “four”) is used fo describe equations with a
degree of two (). While writing this chapter, | finally looked it up in the dictionary (RTFD, you might say). | discovered
that quad originally referred to the four sides of a square. Thus, a squared variable is quadratic.

I used the quadratic easing curve earlier in Figure 7-4. It's actually half a
parabola. Here it is again, for reference purposes, in Figure 7-7.
Here’s the quadratic ease-in ActionScript function:

Math.easeInQuad = function (t, b, c, d) {
return c*(t/=d)*t + b;
Y

Recall that t is time, b is beginning position, c is the total change in
position, and d is the duration of the tween.

This equation is more complex than the linear tween, but it’s the
simplest of the equations that implement easing. Basically, I normalize t by
dividing it by 4. This forces t to fall between O and 1. I multiply t by itself
to produce quadratic curvature in the values. Then I scale the value from a

FIGURE 7-7

Graph of quadratic easing

Chapter 7: Motion, Tweening, and Easing 211

normalized one to the desired output, by multiplying by c. I finish off the
position calculation by adding the initial offset b, then returning the value.

NOTE: The t /=dbitinthe preceding code is an optimization technique. This compound operator lets you divide
and reassign t, and use its value in further operations, all in one step. The Flash Player uses a stack-based virtual machine
that has four “registers” or memory locations reserved for holding data temporarily. Information can be stored and retrieved
much faster from a register than from a variable, but registers are rarely used in Flash-generated bytecode. However, in-ine
syntax ike p = (£ /=a) * t is compiled to bytecodes that use one of the registers to temporarily store a value during
the calculation, speeding up the process. (A special thanks goes to Tatsuo Kato for first applying this technique to my code.)

The following code is the quadratic ease-out function:

Math.easeOutQuad = function (t, b, c, d) {
return -c * (t/=d)*(t-2) + b;
Y

The original quadratic curve needed to be massaged a bit to get it where I
wanted it. I multiplied ¢ by -1 to flip the curve vertically. I also had to play
with the value of £ to shift the curve into place.

Now, here’s the quadratic ease-in-out function:

Math.easeInOutQuad = function (t, b, c, d) {
if ((t/=d/2) < 1) return c/2*t*t + b;
return -c¢/2 * ((--t)*(t-2) - 1) + b;

Y

I've combined the in and out code into one function—two half-tweens
fused together. You may notice several divisions by 2 in the code. I did this
to scale the equations to half their normal size, since each equation covers
half of the time span. The ease-in equation governs the tween until half the
time has elapsed, after which the ease-out equation takes over. Between the
equation-switching and some additional curve-shifting, the code became
increasingly cryptic—but beautifully so.

Cubic Easing

A cubic equation is based on the power of three.

p(t) =t

A cubic ease is a bit more curved than a quadratic one. Figure 7-8 shows
the graph of a tween with a cubic ease-in.

212 Robert Penner’s Programming Macromedia Flash MX

FIGURE 7-8

Graph of cubic easing

The following displays the cubic easing functions:

Math.easeInCubic = function (t, b, ¢, d) {
return ¢ * Math.pow (t/d, 3) + Db;
Y

Math.easeOutCubic = function (t, b, c, d) {
return ¢ * (Math.pow (t/d-1, 3) + 1) + b;
Y

Math.easeInOutCubic = function (t, b, c, d) {
if ((t/=d/2) < 1)
return c¢/2 * Math.pow (t, 3) + b;
return c/2 * (Math.pow (t-2, 3) + 2) + Db;
}i

You'll notice I used the Math.pow() function here to raise numbers to
the third power. In the first cubic easing function, for instance, I calculated
(t/d)’ like this:

Math.pow (t/d, 3)
Alternatively, I could cube this quantity by multiplying it by itself:

(t/=d)*t*t

However, once you get into higher exponents, it’s faster to just call
Math.pow() to perform the multiplication.

Chapter 7: Motion, Tweening, and Easing 213

Quartic Easing

A quartic equation is based on the power of four:

The quartic ease, shown in Figure 7-9, puts just a bit more bend in the
curve. A cubic ease, though more pronounced than a quadratic ease, still
feels fairly natural. It’s at the quartic level that the motion starts to feel a
bit “other-worldly,” as the acceleration becomes more exaggerated.

Here are the quartic easing functions:

Math.easeInQuart = function (t, b, c, d) {
return ¢ * Math.pow (t/d, 4) + b;

Y

Math.easeOutQuart = function (t, b, c, d) {
return -c¢ * (Math.pow (t/d-1, 4) - 1) + b;

Y

Math.easeInOutQuart = function (t, b, c, d) {
if ((t/=4d/2) < 1)
return c¢/2 * Math.pow (t, 4) + b;
return -c/2 * (Math.pow (t-2, 4) - 2) + b;
Y

The code is similar in structure to the cubic functions, only with Math.pow()
raising t to the fourth power now and some adjusted curve shifting.

v
—

FIGURE 7-9

Graph of quartic easing

214

Robert Penner’s Programming Macromedia Flash MX

Quintic Easing

Quintic easing continues the upward trend, raises time to the fifth power:
p(t) =t

Quintic is a fairly pronounced curve, as Figure 7-10 shows. The motion
starts out quite slow, then becomes quite fast. The curvature of the graph is
close to that of exponential easing, discussed later in the chapter.

Putting all of the t" ease curves on the same graph makes for an
interesting comparison, as shown in Figure 7-11.

Here are the quintic easing functions:

Math.easeInQuint = function (t, b, c, d) {
return ¢ * Math.pow (t/d, 5) + b;
Y

Math.easeOutQuint = function (t, b, c, d) {
return ¢ * (Math.pow (t/d-1, 5) + 1) + b;
Y

Math.easeInOutQuint = function (t, b, c, d) {
if ((t/=d/2) < 1)
return c/2 * Math.pow (t, 5) + b;
return c¢/2 * (Math.pow (t-2, 5) + 2) + b;
Y

This concludes the t" easing equations. We will now look at some other
mathematical operations that can produce easing curves.

v
—+

FIGURE 7-10

Graph of quintic easing

Chapter 7: Motion, Tweening, and Easing 215

—» t

1

FIGURE 7-11

Graphs of , 1, £, t*, and £ easing

Sinusoidal Easing

A sinusoidal equation is based on a sine or cosine function. Either one
produces a sine wave—a periodic oscillation of a specific shape. This is the
equation on which I based the easing curve:

p(t) = sin(t X 1/2)

In the ActionScript implementation, two of the sinusoidal easing
functions use cosine instead, but only to optimize the calculation. Sine and
cosine functions can be transformed into each other at will. You just have
to shift the curves along the time axis by one-quarter of a cycle (90 degrees
or ©t/2 radians).

Sinusoidal easing is quite gentle, even more so than quadratic easing.
Figure 7-12 shows that its path doesn’t have a lot of curvature. Much of the
curve resembles a straight line angled at 45 degrees, with just a bit of a
curve to it.

Here are the sinusoidal easing functions:

Math.easeInSine = function (t, b, ¢, d) {
return ¢ * (1 - Math.cos(t/d * (Math.PI/2))) + b;
Y

Math.easeOutSine = function (t, b, c, 4d) {
return ¢ * Math.sin(t/d * (Math.PI/2)) + b;
Y

Math.easeInOutSine = function (t, b, c, d) {
return c/2 * (1 - Math.cos(Math.PI*t/d)) + b;
Y

216 Robert Penner’s Programming Macromedia Flash MX

—» t

1

FIGURE 7-12

Graph of sinusoidal easing

Exponential Easing

I based my exponential functions on the number 2 raised to a multiple of 10:

p(t) = ploen

Of all the easing equations in this chapter, this one took me the longest

to find. Part of the challenge is that the slope for an ease-in curve should
be zero at t=0. An exponential curve, however, never has a slope of zero.
I ended up giving the curve a very small slope that was “close enough” to
zero. (If you plug t=0 into the preceding equation, you get 2", which is
0.0009765625.)

Exponential easing has a lot of curvature, as shown in Figure 7-13.

The following shows the exponential easing functions:

Math.easeInExpo = function (t, b, <, d) {
return ¢ * Math.pow(2, 10 * (t/d - 1)) + Db;
Y

Math.easeOutExpo = function (t, b, c, d) {
return ¢ * (-Math.pow(2, -10 * t/d) + 1) + b;
Y

Math.easeInOutExpo = function (t, b, c, d) {
if ((t/=d/2) < 1)
return c/2 * Math.pow(2, 10 * (¢t - 1)) + b
return c/2 * (-Math.pow(2, -10 * --t) + 2) + b;

Y

Chapter 7: Motion, Tweening, and Easing 217

v
—

FIGURE 7-13

Graph of exponential easing

The exponential ease-out function Math.easeOutExpo() produces essentially
the same motion as the standard exponential slide discussed earlier. However,
with my approach, you have precise control over the duration of the tween,
and can jump to any point in time without running the tween from the
starting point.

Circular Easing

Circular easing is based on the equation for half of a circle, which uses a
square root (shown next).

p(t)=1-V1-t2

The curve for circular easing is simply an arc (the quarter-circle shown in
Figure 7-14), but it adds a unique flavor when put into motion. Like quintic

v
—

FIGURE 7-14

Graph of circular easing

218 Robert Penner’s Programming Macromedia Flash MX

and exponential easing, the acceleration for circular easing is dramatic, but
somehow it seems to happen more “suddenly” than the others.
Here are the circular easing functions:

Math.easeInCirc = function (t, b, ¢, d) {
return ¢ * (1 - Math.sqgrt(l - (t/=d)*t)) + b;
Y

Math.easeOutCirc = function (t, b, c, d) {
return ¢ * Math.sgrt(l - (t=t/d-1)*t) + b;
Y

Math.easeInOutCirc = function (t, b, c, d) {
if ((t/=d/2) < 1)
return c/2 * (1 - Math.sgrt(l - t*t)) + b;
return c/2 * (Math.sgrt(l - (t-=2)*t) + 1) + b;
Y

This concludes the tweening functions for this chapter. Like an ice cream
stand, we have eight flavors of tweening: linear, quadratic, cubic, quartic,
quintic, sinusoidal, exponential, and circular. Obviously, additional types
of tweening are possible. All it takes is some kind of equation that takes the
four essential parameters—time, beginning position, change, and duration—
and calculates an appropriate position.

Introducing the Tween Class

Remember the process we went through earlier in the chapter to produce a
dynamic tween? This was the resulting code:

// a linear tween in _Xx

this.begin = 100;

this.finish = 220;

this.change = this.finish - this.begin;

this.duration = 30;

this.time = 0;

this.onEnterFrame = function () {

with (this) {

_x = Math.linearTween (time++, begin, change, duration);
if (time > duration) delete this.onEnterFrame;

Chapter 7: Motion, Tweening, and Easing 219

The code works well, but it’s a bit unwieldy to type it all out whenever
we want to create a dynamic tween. I developed a Tween class to simplify
dynamic ActionScript movement, encapsulating the necessary elements for
a tween. Using Tween, I can replace the preceding code with just one line:

x_twn = new Tween (this, "_x", Math.tweenLinear, 100, 220, 30);

The Tween instance x_twn handles the movement deftly, automatically
starting and stopping the movement and keeping track of the time in its
own internal clock. Soon, we’ll examine the inner workings of the Tween
class and learn how it manages the necessary details. But first, let’s look at
its superclass, Motion.

The Motion Class

I abstracted a lot of animation functionality into a Motion class. Motion is
the superclass for several classes, one of which is Tween (another is the
MotionCam class, discussed in Chapter 13). We'll look first at the Motion
class, and then the Tween class.

The Motion Constructor

The constructor for the Motion class has a fair bit of code:

_global.Motion = function (obj, prop, begin, duration, useSeconds) {
this.setObj (obj);
this.setProp (prop);
this.setBegin (begin);
this.setPosition (begin);
this.setDuration (duration);
this.setUseSeconds (useSeconds) ;
this. listeners = [];
this.addListener (this);
this.start();

This isn’t as complicated as it looks. Most of the code has to do with
initializing properties. We'll step through it a bit at a time.

First off, we have five arguments that enter the function. Table 7-1 lists
and describes the arguments for the Motion constructor.

220 Robert Penner’s Programming Macromedia Flash MX

Parameter Type Sample Value Description

obj object reference mc The object confaining the affected property

prop siring v_x” The name of the property that will be controlled by the motion

begin number 20 The starting position of the motion

duration number 30 The length of time of the motion, in either frames or seconds; if the
parameter is undefined or 0, the duration is infinity

useSeconds Boolean true A flag asking whether to use seconds instead of frames; defaults to false

TABLE 7-1

Arguments for the Motion Constructor

The next three lines initialize the first three properties—obj, prop, and
begin—Dby calling their respective setter methods:

this.setObj (obj);
this.setProp (prop);
this.setBegin (begin) ;

Since the motion’s position should start at the specified beginning
position, we set the position to begin as well:

this.setPosition (begin);

Then, the last two constructor arguments, duration and useSeconds,
are passed to their respective setter methods:

this.setDuration (duration);
this.setUseSeconds (useSeconds) ;

Next, we declare a _listeners array property. This is required to
support event broadcasting.

this._ listeners = [];

A Motion object broadcasts custom events, like onMotionStarted and
onMotionChanged. The ASBroadcaster object is used to enable Motion as an
event source, as outlined in Chapter 6. The ASBroadcaster.initialize() method
is invoked on the prototype after the constructor, as we'll see shortly.

The next step is to make the Motion instance listen to itself:

this.addListener (this);

Chapter 7: Motion, Tweening, and Easing 221

As a result of this code, a Motion receives its own events. This means we
can not only add other objects as listeners for Motion events, we can also
use the Motion’s own event handlers as callbacks for the events.

If this seems confusing, think of a more familiar class: TextField. A TextField
instance works with events in much the same way as a Motion. One of the
TextField event handlers is onChanged(). A text field can register listeners, all
of which can respond to this event with their onChanged() event handlers.
However, the text field itself responds to the event with its own onChanged()
handler. Thus, we could say that a text field listens to its own events. In
the TextField constructor, the text field adds itself as a listener, with the
equivalent of this code:

this.addListener (this);

This is exactly what I have done in the Motion constructor. I've simply
mimicked the process by which the TextField class handles events. I did this
in order to provide maximum flexibility. Some people may want to use
listeners; others will prefer simple callbacks on the Motion object itself. The
choice is yours.

You may be wondering how I know what'’s inside the TextField constructor.
The truth is, I don’t know the exact code, but I have other evidence that
the text field adds itself as a listener. If you create a new text field and check
its _listeners property, you'll find it already has an object in it. The
length of the _listeners array is 1, as the following code demonstrates:

tf = new TextField() ;
trace (tf._listeners.length); // output: 1

Furthermore, the first listener in the array—the object in the first index—
is the text field itself, as the following code proves:

trace (tf. listeners([0] == tf); // true

The Motion constructor has one last task to perform. The function
concludes by starting the Motion from the beginning:

this.start();

Now the Motion instance moves automatically each frame, because, as
we'll see, the start() method enables the object’s onEnterFrame() handler.

222

Robert Penner’s Programming Macromedia Flash MX

Public Methods

Adding methods is my favorite part of building a class. It’s like I've created
a basic shell for a gadget, and now I get to add buttons and features.

I start by defining a temporary shortcut variable, MP, to Motion’s
prototype object:

var MP = Motion.prototype;

Now I can define methods in MP, and it’s the same as defining them in
Motion.prototype, only with shorter code.

We want Motion to be an event source, so we call AsBroadcaster.initialize()
on its prototype to empower it to that end (see Chapter 6), using the
following code:

AsBroadcaster.initialize (MP);

Now let’s look at the public methods that let the ActionScript user
manipulate Motion objects.

Motion.stari()
The start() method causes the Motion to play from the beginning:

MP.start = function () {
this.rewind() ;
MovieClip.addListener (this);
this.broadcastMessage ("onMotionStarted", this);

Y

First, the rewind() method is called to send the Motion to its beginning
point in time:

this.rewind() ;
Then, the object is added as a listener for MovieClip events:
MovieClip.addListener (this);

The Motion instance now receives an onEnterFrame event for each frame,
which causes its onEnterFrame() method to execute automatically. (We'll
see later that onEnterFrame() calls the nextFrame() method.)

The last line broadcasts the onMotionStarted event, which invokes the
onMotionStarted() methods of both the Motion instance and its subscribed
listeners. A reference to this, the current object, is sent in the broadcast as
an argument. This allows listeners to know which object is sending the event.

Chapter 7: Motion, Tweening, and Easing 223

Motion.stop()

The stop() method causes the Motion to quit moving on its own. Here’s
the code:

MP.stop = function () {
MovieClip.removeListener (this);
this.broadcastMessage ("onMotionStopped", this);
};

The first line uses the MovieClip.removeListener() method to deactivate
the onEnterFrame() handler, stopping the frame loop. As a result, the Motion
instance no longer moves each frame. The second line broadcasts the
onMotionStopped event to subscribed listeners. Again, a reference to this is
sent in the broadcast as an argument.

Motion.resume()

The resume() method causes the Motion object to play automatically. Unlike
the start() method, however, resume() proceeds from the Motion’s current
time instead of from the beginning.

MP.resume = function () {
this.fixTime () ;
MovieClip.addListener (this);
this.broadcastMessage ("onMotionResumed", this);
Y

The first line calls fixTimer() to make the necessary adjustments when in
timer-based mode (useSeconds is true). When a Motion is paused, the value
of getTimer() keeps increasing. When the Motion starts playing again, the
fixTime() method finds the new timer offset to use for the internal time.

The second line calls MovieClip.addListener(), causing the Motion instance
to receive onEnterFrame events. The last line broadcasts the onMotionResumed
event to subscribed listeners, which can react accordingly with their
onMotionResumed() event handlers.

Motion.rewind()

The rewind() method sends the Motion back to its beginning point in time.
Here is the code for it:

MP.rewind = function (t) {
this.Stime = (t == undefined) 2?2 1 : t;
this.fixTime () ;

Y

224 Robert Penner’s Programming Macromedia Flash MX

MP.nextFrame

if (this
this
} else {
this
}

The first line validates the incoming t argument, which specifies a
starting offset. If t isn’t specified, a default value of 1 is chosen; otherwise,
the Stime property is set to the value of t. I'm using a dollar sign ($) in the
property name to signify that it has a corresponding time getter/setter
property, which we'll discuss later in the chapter. This is merely a personal
naming convention I settled on.

Lastly, fixTime(), a private method, is called to adjust the internal
time-tracking offset. We'll look at fixTime() later in the chapter in the
“Private Methods” section.

NOTE: When rewind() s called publicly, that is, by ActionScript outside the Motion instance, the £ parameter
isn't necessary. The parameter s used only by the Motion.setTime() method intemally in a special case where the Motion
instance loops in timer-based mode.

Motion.fforward()

The fforward() method “fast-forward” the Motion instance to its end point.
Over the course of the Motion, time moves between zero and the duration.
Thus, the endpoint of the Motion is simply where the current time equals
the duration. The method’s code is straightforward:

MP.fforward = function () {
this.setTime (this.S$duration) ;
this.fixTime () ;

Y

The time is set to the Motion’s duration, and then adjusted with the
private fixTime() method.

Motion.nextFrame()

The nextFrame() method advances the time of the Motion by one frame. The
code is built to accommodate the two different time modes—timer-based
and frame-based:

= function () {
.SuseSeconds) {
.setTime ((getTimer () - this.startTime) / 1000);

.setTime (this.Stime + 1);

Chapter 7: Motion, Tweening, and Easing 225

The if statement checks the SuseSeconds property. If it is true, the
Motion is in timer-based mode. In that case, the value of getTimer() is
checked against the internal offset this.startTime, and divided by 1000
to convert it to seconds. This value is passed to the setTime() method.

If the Motion is in frame-based mode, the time value is simply increased
by one.

NOTE: Although nextFrame() is a public method, you probably won't need to call it directly in most situations, as
itis called automatically by the onFnterframe() handler.

Motion.prevFrame()

The prevFrame() method sets the Motion back in time by one frame. Here’s
the code:

MP.prevFrame = function () {
if (!this.S$useSeconds) this.setTime (this.Stime - 1);
Y

The prevFrame() method is designed to work only with frame-based
motion. It’s quite difficult to go backwards when you're using timer-based
motion, because getTimer() is always moving forward. Consequently, there
is an if statement to check the $useSeconds property. If the property is
true, the Motion instance is timer-based, and so the rest of the code is not
allowed to execute. If $useSeconds is false, the Motion is frame-based, and
thus, the time is decreased by 1 to go to the previous frame.

NOTE: Whena Motionis playing automatically, the nextFrame() method is called each frame by
onknterFrame(). Thus, you should call the sfop() method before calling prevFrame(). Otherwise, the calls to
prevFrame() and nextFrame() will effectively cancel each other out in each frame.

Motion.onEnterFrame|()

One of the best features of Motion objects is that they can run themselves.
As we saw earlier, the start() method uses MovieClip.addListener() to
subscribe the object to onEnterFrame events. All we really need the
onEnterFrame() handler to do is advance the Motion to the next frame.
Thus, its code is very simple:

MP.onEnterFrame = MP.nextFrame;

We just assign a reference to the nextFrame() method straight across to
onEnterFrame().

226

Robert Penner’s Programming Macromedia Flash MX

Motion.toString()

The toString() method provides a custom string representation of the object.
I chose the three main Motion properties to put in the string—prop, time,
and position

MP.toString = function () {
return "[Motion prop=" + this.prop + " t=" + this.time +
" pos=" + this.position + "]";

};

This method is useful primarily for debugging purposes. When we trace
a Motion obiject, its toString() method is called automatically, sending a string
to the Output window. In the following code example, a Motion is created
and traced:

motionX = new Motion (this, "_x", 90, 20, false);
trace (motionX);
// output: [Motion prop=_x t=0 pos=90]

Getter/Setter Methods

The getter and setter methods of a class are public methods that provide an
interface to its properties. The Motion class has quite a few getter and setter
methods.

Motion.getPosition()
The getPosition() method is an empty placeholder function:

MP.getPosition = function (t) {
// calculate and return position

Y

Nevertheless, getPosition() is the most crucial Motion method. Its purpose
is to return the position of the Motion at a specified time.

If that is the case, then why is the getPosition() function empty? It's
what you might call an abstract method. It defines the interface—the
external structure—of the method, but doesn’t specify how the method
is implemented. It is intended to be overridden in either an instance
or a subclass of Motion. We'll see how this is done when we look at the
getPosition() method of the Tween class, which overrides Motion.getPosition().

Chapter 7: Motion, Tweening, and Easing 227

Motion.setPosition()

The setPosition() method changes the position of the Motion. The following
shows the code for the setPosition() method:

MP.setPosition = function (p) {
this.SprevPos = this.Spos;
this.Sobj[this.Sprop] = this.Spos = p;
this.broadcastMessage ("onMotionChanged", this, this.S$pos);

Y

First, the previous position is stored in a separate property this. $prevPos.
This value can be retrieved through the getPrevPos() method. Next, the
incoming p parameter is assigned to the this. Spos property, and then
to the controlled property referenced by this.$obj [this.S$prop].

For instance, if the Motion controls the _alpha of a movie clip ball,
this.$obj[this.S$prop] translates to ball[“_alpha”], which is the
same as ball._alpha. Again, I'm using dollar signs in these property names
because they have corresponding getter/setter properties, defined later.

Lastly, the onMotionChanged event is broadcast to the Motion’s listeners.
This causes each listener’s onMotionChanged() handlers to be invoked and
passed two arguments: the current Motion object and its position. Remember
that the Motion object listens to itself, so its own onMotionChanged() handler
is called here.

Motion.getPrevPos()

At times, we may want to compare a Motion’s current position with the
previous frame’s. For example, we may need to draw a line between the
two points or calculate the Motion’s velocity. The getPrevPos() method
retrieves this value for us. Here’s the code:

MP.getPrevPos = function () {
return this.SprevPos;

Y

Motion.sefTime|()

The purpose of the setTime() method is quite simple: to change the current
time of the Motion. The implementation, though, is a bit involved, as the
method’s code shows:

MP.setTime = function (t) {
this.prevTime = this.Stime;

228

Robert Penner’s Programming Macromedia Flash MX

if (t > this.duration) {
if (this.$looping) {
this.rewind (t - this.$duration);
this.broadcastMessage ("onMotionLooped", this);
} else {
this.stop();
this.broadcastMessage ("onMotionFinished", this);
}
} else if (t < 0) {
this.rewind() ;
} else {
this.Stime = t;
}
this.update() ;

I've spent many hours on this method alone, rethinking and restructuring
the code time and again. There are a number of conditions to check with
nested if. .else statements. If the new time is greater than the duration,
the Motion needs to be stopped, and an onMotionFinished event broadcasted
to listeners. The exception is that if the Motion is set to loop, it should
rewind and broadcast a onMotionLooped event instead.

If the new time t is less than zero, the Motion is rewound. And if by some
chance t is actually in the correct range and makes it through the sieve of
conditionals, the Motion's time is set to the value of t. The update() method is
called after all this, to bring the Motion’s position in line with the new time.

Motion.getTime()

The getTime() method is straightforward, returning the current time stored
in the internal $time property:

MP.getTime = function () {
return this.$time;

Y

Motion.setBegin() and getBegin()

The setBegin() method defines the starting position of the Motion, and the
getBegin() method returns it. Their code is minimal:

MP.setBegin = function (b) {
this.Sbegin = b;
Y

Chapter 7: Motion, Tweening, and Easing 229

MP.getBegin = function () {
return this.Sbegin;
Y

Motion.setDuration() and getDuration()

The setDuration() method defines the length of time of the Motion, in either
frames or seconds. Here’s the method’s code:

MP.setDuration = function (d) {
this.$duration = (d == null || d <= 0) ? Infinity : 4;
i

I perform a simple validation here with an abbreviated if statement (the
ternary operator). This is the logic in plain terms: If the d parameter is
missing, negative, or zero, the Motion is given an infinite duration. Otherwise,
the duration is set to the value of 4.

The getDuration() method returns the Motion’s duration in a straightforward
manner:

MP.getDuration = function () {
return this.S$duration;

Y

Motion.setlooping() and getLooping()

By default, when a Motion's time is up, it stops automatically. However, you
can set a looping flag that causes the Motion to go back to the beginning
instead, repeating the same movement ad infinitum.

The setLooping(') and getLooping() methods provide access to the looping
property. Their code is simple:

MP.setLooping = function (b) {
this.S$looping = b;
}i

MP.getLooping = function () {
return this.S$looping;
}i

Other Getter/Setter Methods

The remaining getters and setters are simple methods. They change or
retrieve their respective properties without any special validation—for now,
that is. The point of getter and setter methods is that they force the user to

230 Robert Penner’s Programming Macromedia Flash MX

invoke a method in order to access a property. In other words, the changing
of a property (or retrieval) is intercepted by a function, which can execute
other code to verify or modify the data. A property may not require any
validation or other associated code at first. However, you may change your
class later on, and find you need to mediate access to certain properties. If
you've been using getter and setter methods all along, you can just update
the code in the methods and not need to change any code outside the class.
All in all, although getter and setter methods may seem like overkill, they
are a good practice in general for OOP projects.

The following code lists the remaining getter and setter methods:

MP.setObj = function (o) {
this.Sobj = o;

Y

MP.getObj = function () {
return this.Sobj;

Y

MP.setProp = function (p) {
this.Sprop = p;

Y

MP.getProp = function () {
return this.Sprop;

}s

MP.setUseSeconds = function (useSecs) {
this.SuseSeconds = useSecs;

}s

MP.getUseSeconds = function () {
return this.SuseSeconds;

Y

Private Methods

In full-fledged object-oriented programming languages like C++ and Java,
private methods are accessible only to code in the same object. In ActionScript,
you can’t hide an object’s methods from the outside environment. However,
you will sometimes have methods that should only be used internally by
the object, ideally. In these cases, it’s good practice to leave comments in
the code indicating that these particular methods are “private.” This basically
means, “you can access these methods, but you shouldn’t need to, so please
don’t.” Using private methods is like walking into a restaurant’s kitchen to
grab your meal: you can do it, but it’s better to leave it to the waiter.

Chapter 7: Motion, Tweening, and Easing 231

with

In the Motion class, I have two private methods: fixTime() and update().
They encapsulate tasks that other methods depend on.

Motion.fixTime()

The Motion.fixTime() method solves a particular problem I ran into with the
resume(), rewind(), and fforward() methods. With the Motion in timer-based
mode (that is, when useSeconds is true and Motion is calculated with
getTimer(')), the time needs to be “fixed” when these three methods are
called. It was difficult to find the solution to this obscure obstacle, and it is
likewise difficult to explain its importance. In any case, here is the code:

MP.fixTime = function () {
if (this.useSeconds)
this.startTime = getTimer () - this.Stime*1000;

Y

First, the useSeconds property is checked. If it is true, the startTime
property is set to the current getTimer() value minus the current time. Since
the Motion's time is stored in seconds, and getTimer() and startTime are in
milliseconds, this. $time is multiplied by 1000. It’s really the startTime
property that is corrected by fixtime()—it is synchronized with the current
time. If startTime is already in sync, it won’t be affected by the method.

Motion.update()

The private method update() updates the Motion's targeted property to
reflect the position at the current time. Here’s the code:

MP.update = function () {
this.setPosition (this.getPosition (this.Stime));
Y

The current time is passed to the getPosition() method, which calculates
and returns the position. This is then passed to the setPosition() method,
which changes the targeted property.

Getter/Setter Properties

With the getter and setter methods defined, we might as well link them to
getter/setter properties, with the following code:

(MP) |
addProperty ("obj", getObj, setObj);
addProperty ("prop", getProp, setProp);
addProperty ("begin", getBegin, setBegin);
(

addProperty ("duration", getDuration, setDuration);

232 Robert Penner’s Programming Macromedia Flash MX

addProperty ("useSeconds", getUseSeconds, setUseSeconds) ;
"looping", getLooping, setLooping);

(

addProperty (
addProperty ("prevPos", getPrevPos, null) ;

(

(

addProperty ("time", getTime, setTime) ;
addProperty ("position",
function() { return this.getPosition(); 1},

function(p){ this.setPosition (p); });

Because we have a consistent naming convention for the getter and setter
methods, the parameters for the addProperty() commands are straightforward.
The name of the property comes first, as a string—"duration” for example.
Then we pass a reference to the getter function, and finally, the setter
function—for instance, getDuration() and setDuration(). In the case of the
prevPos property, there is no setter function (it doesn’t make sense to set
this property from outside the object), so we put null instead of a setter
function reference.

I used the with statement in conjuction with Object.addProperty() to
shorten the code and eliminate redundancy. If I don’t use with, the code
looks like this:

MP.addProperty ("obj", MP.getObj, MP.setObj);
MP.addProperty ("prop", MP.getProp, MP.setProp) ;
// etc.

Since everything in this situation belongs to MP (Motion.prototype),
we might as well set the scope to MP using with:

with (MP) {
addProperty ("obj", getObj, setObj);
addProperty ("prop", getProp, setProp);
// etc.
}

The one oddity in this litany of properties is the position property. The
code looks a bit different:

addProperty ("position",
function() { return this.getPosition(); 1},
function(p){ this.setPosition (p); });

Chapter 7: Motion, Tweening, and Easing 233

Because the getPosition() method is designed to be overridden, we don't
want to connect the position getter/setter property directly to the current
getPosition(). Instead, we use anonymous wrapper functions to look up the
methods dynamically. Without the mediation of these wrapper functions,
the position getter/setter property would not work properly in subclasses
of Motion.

Finishing Off

Now that the methods have been defined, the MP variable is no longer
needed. Thus, it is deleted this way:

delete MP;

The code for the Motion class is finished. We send a message to the
Output window to celebrate:

trace (">> Motion class loaded");

The Tween Class

I have worked on the Tween and Motion classes off and on for almost a year,
spending upwards of 80 hours on them. I originally had just a Tween class,
but after a while, I saw that other types of motion, such as physics or
recorded motion, shared much of the same infrastructure. I abstracted the
overlapping functionality out of the Tween class and into the Motion
superclass. We have seen how Motion objects keep track of time, position,
movement, and other matters. Now we’ll look at how the Tween class builds
on top of this and provides a convenient, object-oriented framework for
ActionScripted motion tweens.

The Tween Constructor

Once again, our exploration of a class begins with the constructor. Here’s
the code for the Tween constructor:

_global.Tween = function (obj, prop, func,
begin, finish, duration, useSeconds) {
this.superCon (obj, prop, begin, duration, useSeconds) ;
this.setFunc (func);
this.setFinish (finish);

234 Robert Penner’s Programming Macromedia Flash MX

Parameter Type Sample Valve Description

obj object reference this The object containing the property to be tweened

prop string X" The name of the property fo tween

func function reference Math.easeInQuad A tweening function used to calculate the position
begin number 100 The starting position of the tween

finish number 220 The finishing position of the tween

duration number 0 The length of time of the tween, in either frames or seconds
useSeconds Boolean true A flag specifying whether fo use seconds instead of frames

TABLE 7-2

Arguments for the Tween Constructor

The constructor has seven arguments which are summarized and
described in Table 7-2.

The first line of the constructor passes five of the seven arguments to the
Motion superclass constructor:

this.superCon (obj, prop, begin, duration, useSeconds);

The remaining two arguments, func and £inish, are passed to the
appropriate setter methods:

this.setFunc (func);
this.setFinish (finish);

That's all there is to the Tween constructor; it’s actually quite simple.
Although seven arguments may seem like a lot, five of them are handled by
the superclass, and the other two are taken care of by straightforward methods.

Immediately after the constructor, inheritance is established between the
Tween and Motion classes:

Tween.extend (Motion) ;
This sets up the prototype chain so that Tween'’s prototype inherits

everything from Motion’s prototype; its methods in particular. Speaking
of which, it’s time to give our Tween class some methods of its own.

Public Methods

As usual, I define a temporary shortcut to the class prototype, in the
following code:

var TP = Tween.prototype;

Chapter 7: Motion, Tweening, and Easing 235

Because the Tween class inherits a number of public methods from Motion,
it doesn’t need too many more. I thought of two new public methods that
would be useful, though I will probably think of more in the future.

Tween.continueTo()

Wouldn't it be nice to have an easy way to string together several movements?
For instance, you may want to tween a clip’s _alpha to 80, then tween to
40 immediately after. The continueTo() method lets you point a Tween to a
new destination with a simple command. Here is its code:

TP.continueTo = function (finish, duration) {
this.setBegin (this.getPosition()) ;
this.setFinish (finish);
if (duration != undefined)

this.setDuration (duration);
this.start();

}i

First, the current position of the Tween becomes its new starting point:
this.setBegin (this.getPosition()) ;

Then, the incoming finish argument becomes the new finishing point
of the Tween:

this.setFinish (finish);

The method also gives you the option of setting a new duration. If the
duration argument is defined, the Tween is changed accordingly:

if (duration != undefined)
this.setDuration (duration);

Lastly, the Tween is started from its new beginning point:
this.start();

The following code example shows how to use continueTo() in
conjunction with the onMotionFinished() handler to produce a continuous

string of eased movements:

// test Tween.continueTo ()
// "ball" is an existing movie clip instance
X_twn = new Tween (ball, "_x", Math.easeInOutCirc, 20, 70, 25);

236 Robert Penner’s Programming Macromedia Flash MX

x_twn.onMotionFinished = function () {
this.continueTo (this.position + 50);
Y

This code causes the ball movie clip to start at a position (20, 0), and move
to (70, 0) over 25 frames, using circular in-out easing. When x_ twn finishes by
reaching its destination, the onMotionFinished event is fired automatically. This
invokes x_twn's callback method x_twn.onMotionFinished(), which causes the
Tween to “continue to” the point 50 pixels to the right of its current position.
When this new destination is reached, the onMotionFinished event fires again,
which defines a new destination, and so on. The process repeats indefinitely,
but it can be stopped either by calling the x_twn.stop() method or by deleting
the x_twn.onMotionFinished() handler.

Tween.yoyo()
Here’s a fun method—jyoyo():

TP.yoyo = function () {
with (this) {
continueTo (getBegin(), getTime());
}
Y

The yoyo() method sends the Motion back towards its starting point,
using the continueTo() method. The current time is passed as the second
parameter. This ensures that the trip backward takes the same amount of
time as the trip forward. For example, if a Tween has a duration of 60 frames,
but the yoyo() method is called 25 frames into it, the Tween will return to
its starting point in 25 frames.

Here is a code example that produces a nice down-up yo-yo motion
with easing:

// test Tween.yoyo()
// "ball" is an existing movie clip instance
v_twn = new Tween (ball, "_y", Math.easeOutQuad, 40, 180, 20);
v_twn.onMotionFinished = function () {
this.setFunc (Math.easeInQuad) ;
this.yoyo();
delete this.onMotionFinished;

Y

Chapter 7: Motion, Tweening, and Easing 237

First, a Tween object is created to control the _y property of the ball
movie clip, taking it from 40 to 180 pixels vertically in a 20-frame time
span. The Tween.onMotionFinished() handler is then assigned a few actions
that will execute when the Tween finishes:

1. The tweening function is changed from an ease-out to an ease-in. A
real yo-yo starts out fast at the top and slows to a stop at the bottom—
an ease-out. It then speeds up as it rises, stopping suddenly at the
top—an ease-in.

2. The Tween.yoyo() method is called to swap the start and end points
of the Tween.

3. The onMotionfinished() handler is deleted because we want it to only
execute once. If you eliminate this step, the ball will oscillate indefinitely.

Getter/Setter Methods

The Tween class adds three getter/setter properties: func, change, and
finish. We first define the getter/setter methods for these, then connect
them to the properties with Object.addProperty() (illustrated later in the
“Getter/Setter Properties” section of this chapter). But first, we take care
of the all-important getPosition() method.

Tween.getPosition()

The getPosition() method returns the position of the Tween at a certain
time, and overrides the superclass method Motion.getPosition() (which is
an empty function by default). Here’s the code:

TP.getPosition = function (t) {
if (t == undefined) t = this.$time;
with (this) return $func (t,
Sbegin,
Schange,
Sduration) ;

Y

In the first line, if a specific time is not given through the t argument, the
current time is chosen. Next, the properties for the time, beginning position,
change in position, and duration are passed to the easing function. The
resulting value is returned from the method.

238 Robert Penner’s Programming Macromedia Flash MX

Tween.setFunc() and getFunc()

The setFunc() and getFunc() methods govern the func getter/setter property,

represented internally by the $func property. My tweening functions are

ideal candidates for func, although you can define your own, as long as

they conform to the same basic structure and arguments (t, b, ¢, and d).
Here’s the code for the methods:

TP.setFunc = function (f) {
this.Sfunc = £;
Y

TP.getFunc = function () {
return this.S$func;
Y

Tween.setChange() and getChange()

The setChange() and getChange() methods mediate access to the change
property, which stores the change in position from the beginning of the
Tween to the end.

NOTE: Inmathematical function terminology, you could call the change of a tween its range, and its duration the
tween's domain.

The code for these methods is straightforward:

TP.setChange = function (c¢) {
this.S$change = c;
Y

TP.getChange = function () {
return this.S$change;
Y

Tween.sefFinish() and getFinish()

The finish getter/setter property governs the finishing position of the
Tween. It is implemented a little differently than previous properties.

The value of £inish per se is not stored as its own property. Rather, it is
defined in terms of the change property. The two are interdependent: you
can’t modify finish without modifying change. Thus, I only maintain
one internal property—for change, calculating finish as needed. I chose
change because my tweening functions use a change argument (rather
than a finish argument).

Chapter 7: Motion, Tweening, and Easing 239

You can see in the following code how a specified value for finish is
converted into the equivalent change value:

TP.setFinish = function (f) {
this.Schange = £ - this.S$begin;
Y

The beginning position is subtracted from the finishing point to yield
the change in position.

Likewise, the getFinish() method calculates the £inish value on the fly
by adding change to begin:

TP.getFinish = function () {
return this.Sbegin + this.S$Schange;
Y

Getter/Setter Properties

The Tween class inherits the nine getter/setter properties of the Motion
superclass. It also adds three more getter/setter properties—func, change,
and finish—with the following code:

with (TP) {
addProperty ("func", getFunc, setFunc);
addProperty ("change", getChange, setChange) ;
addProperty ("finish", getFinish, setFinish);

Some people will prefer getter/setter properties; others will choose to
call the methods directly. It’s a matter of personal preference. Personally,
I use the methods most of the time; it’s slightly faster than calling the
getter/setter property, which causes the run-time interpreter to look up the
method for you.

Finishing Off

With the constructor, methods and properties defined, our Tween class is
complete. It’s time to clean up by deleting the shortcut variable TP and
sending a message to the Output window, with the last bit of code:

delete TP;
trace (">> Tween class loaded") ;

240 Robert Penner’s Programming Macromedia Flash MX

Conclusion

In this chapter, we have looked at dynamic motion from a particular angle—
where there is one definite position for a given time. We dissected the concept
of easing and looked at several examples of easing curves and functions.
These concepts are encapsulated in a practical manner in the Motion and
Tween classes. In the next chapter, we’ll look at motion produced by a
different process—physics animation.

