Extreme Programming:

So Crazy It Just Might Work

Robert Penner
FITC 2005



Some Risks in Software Development

Schedule slips

Project canceled
System calcifies

Too many defects
Business misunderstood
Business changes

False feature rich

Staff turnover



Stereotypical Approaches to
Development

Big Plan Up Front (waterfall)
Seat of Your Pants (cowboy)
XP literature addresses Big Plan Up Front mostly

XP aims to increase both discipline and flexibility



XP Practices

The Planning Game * Pair Programming
Small Releases * Collective Ownership
Metaphor * Continuous Integration
Simple Design * Forty-Hour Week
Testing * On-Site Customer

Refactoring * Coding Standards



My Current Project

* The MusicRain Viewer (demo)



The Planning Game

Eisenhower: In preparing for battle | have always found that plans
are useless, but planning is indispensable.

Stories
Iterations

Business vs. Technical Decisions



Small Releases

* Release early, release often

* The application grows organically



Metaphor

A shared understanding of the system
“Desktop”

“Files”

“Folders”



Testing

| lost my wallet recently
How long ago did the bug enter the system!?
How do you know something broke because of a change!

Testing thoroughly and often is crucial but boring



Unit Tests

e Have confidence
e Have fun

* Tests serve as documentation that is always up to date



Test-Driven Development Cycle

|. Write a test

2. Write just enough code to pass the test
3. Run the test suite

4. If any tests fail, go to #2

5. Refactor

5. Repeat



Acceptance Tests

* Acceptance Tests verify a working system from the customer’s
point of view

* The customer writes them (with help)



Simple Design

“The simplest thing that could possibly work”
“You aren’t going to need It”
“Make it work, make it right, make it fast”

Helps procrastinators get started



Refactoring

Refactoring is restructuring code without changing its overall
behavior

Supported by unit tests
The Big Ball of Mud

The Pasta Theory of Code
Smells

You get good at changing because you’re doing it all the time



Pair Programming

Two developers at one machine working on the same code
Driver and Navigator
Pair Pressure

Your Truck Number



My Experience with Pair Programming

e [Effective and fun
* Skype for voice

* Screen Sharing: Windows XP Remote Assistance (fast)
* Or TightYNC (cross-platform)



Costs and Benefits of Pair
Programming

A Study by Laurie Williams

Total development time increased by 15% (but not 100%)
Defect rate decreased by 15%

Mistakes are caught sooner

Designs are better with less code

Problems are solved faster by tag-teaming

Improved team dynamics and communication

Peer mentoring

People enjoy their work more



Collective Ownership

* Anyone on the team can change any code at any time, as long as
the tests pass

* Trend: Open Source, Wikipedia
* Benefit: Agility, Speedy updates



Continuous Integration

* Integrate and build the system many times a day
* All the tests have to pass

* Easier to find a bug’s point of entry



Forty-Hour Week

The number of hours can vary, but the pace needs to be
sustainable

Respect the humanity of the software development process

Don’t work overtime a second week in a row



On-site Customer

* An end user is available to the team full-time
* Answers questions, sets priorities

* Expensive to do, expensive not to do



Coding Standards

Naming Conventions
Formatting, indentation
Curly Brace Wars

Makes pair programming and collective code ownership easier



Case Studies

* Escrow.com Migrates to Extreme Programming

* Laurie Williams: Pair Programming



Adopting XP

* Pick your worst problem
° Appl)’ XP to it

* Unit testing and pair programming are good to try



Resources

robertpenner.com/presentations/
XP Books by Kent Beck
extremeprogramming.org
Xprogramming.com
pairprogramming.com

asunit.org



