
Extreme Programming:
So Crazy It Just Might Work

Robert Penner
FITC 2005

Some Risks in Software Development

● Schedule slips
● Project canceled
● System calcifies
● Too many defects
● Business misunderstood
● Business changes
● False feature rich
● Staff turnover

Stereotypical Approaches to
Development

● Big Plan Up Front (waterfall)
● Seat of Your Pants (cowboy)
● XP literature addresses Big Plan Up Front mostly
● XP aims to increase both discipline and flexibility

XP Practices

● The Planning Game
● Small Releases
● Metaphor
● Simple Design
● Testing
● Refactoring

● Pair Programming
● Collective Ownership
● Continuous Integration
● Forty-Hour Week
● On-Site Customer
● Coding Standards

My Current Project

● The MusicRain Viewer (demo)

The Planning Game

● Eisenhower: In preparing for battle I have always found that plans
are useless, but planning is indispensable.

● Stories
● Iterations
● Business vs. Technical Decisions

Small Releases

● Release early, release often
● The application grows organically

Metaphor

● A shared understanding of the system
● “Desktop”
● “Files”
● “Folders”

Testing

● I lost my wallet recently
● How long ago did the bug enter the system?
● How do you know something broke because of a change?
● Testing thoroughly and often is crucial but boring

Unit Tests

● Have confidence
● Have fun
● Tests serve as documentation that is always up to date

Test-Driven Development Cycle

● 1. Write a test
● 2. Write just enough code to pass the test
● 3. Run the test suite
● 4. If any tests fail, go to #2
● 5. Refactor
● 5. Repeat

Acceptance Tests

● Acceptance Tests verify a working system from the customer’s
point of view

● The customer writes them (with help)

Simple Design

● “The simplest thing that could possibly work”
● “You aren’t going to need It”
● “Make it work, make it right, make it fast”
● Helps procrastinators get started

Refactoring

● Refactoring is restructuring code without changing its overall
behavior

● Supported by unit tests
● The Big Ball of Mud
● The Pasta Theory of Code
● Smells
● You get good at changing because you’re doing it all the time

Pair Programming

● Two developers at one machine working on the same code
● Driver and Navigator
● Pair Pressure
● Your Truck Number

My Experience with Pair Programming

● Effective and fun
● Skype for voice
● Screen Sharing: Windows XP Remote Assistance (fast)
● Or TightVNC (cross-platform)

Costs and Benefits of Pair
Programming

● A Study by Laurie Williams
● Total development time increased by 15% (but not 100%)
● Defect rate decreased by 15%
● Mistakes are caught sooner
● Designs are better with less code
● Problems are solved faster by tag-teaming
● Improved team dynamics and communication
● Peer mentoring
● People enjoy their work more

Collective Ownership

● Anyone on the team can change any code at any time, as long as
the tests pass

● Trend: Open Source, Wikipedia
● Benefit: Agility, Speedy updates

Continuous Integration

● Integrate and build the system many times a day
● All the tests have to pass
● Easier to find a bug’s point of entry

Forty-Hour Week

● The number of hours can vary, but the pace needs to be
sustainable

● Respect the humanity of the software development process
● Don’t work overtime a second week in a row

On-site Customer

● An end user is available to the team full-time
● Answers questions, sets priorities
● Expensive to do, expensive not to do

Coding Standards

● Naming Conventions
● Formatting, indentation
● Curly Brace Wars
● Makes pair programming and collective code ownership easier

Case Studies

● Escrow.com Migrates to Extreme Programming
● Laurie Williams: Pair Programming

Adopting XP

● Pick your worst problem
● Apply XP to it
● Unit testing and pair programming are good to try

Resources

● robertpenner.com/presentations/
● XP Books by Kent Beck
● extremeprogramming.org
● xprogramming.com
● pairprogramming.com
● asunit.org

